

IEEE PES ISGT Asia 2022

The Future of DER Hosting Capacity and Operating Envelopes

Prof Luis(Nando) Ochoa

IEEE PES Distinguished Lecturer luis.ochoa@unimelb.edu.au

> 3rd November 2022 Keynote Speaker

Outline

- 1. Voltage Calculations and DER¹
- 2. Our Model-Free Approach
- 3. Smart Meter Data
- 4. Model-Free Calculations
- 5. Model-Driven vs Model-Free
- 6. Key Remarks

= \times

I Voltage Calculations and DER

How can we determine the maximum exports (or imports) that our networks can withstand?

Exploration of DER scenarios \rightarrow **Power flows are essential**

Voltage Calculations and DER Operating Envelopes

kW **▲** Exp

kW 🕈 Imp

- <u>Time-varying</u> maximum power imports/exports at the meter
- Calculated to ensure network integrity. Values may depend on location.

Again, exploration of DER scenarios \rightarrow Power flows are essential

To achieve this, distribution companies are producing LV network models → Can be time-consuming, expensive and not 100% accurate²

² Errors in topology, phase grouping, impedances, neutral, grounding, etc.

1 Voltage Calculations and DER Today (Ideally)

Power & Energy Society*

Scenario to Check

Min/Max Demand (P_{cust}, Q_{cust})

DER exp/imp (P_{DER}, Q_{DER})

Voltage at the ref bus

What if we could calculate voltages without electrical models?

To achieve this, distribution companies are producing LV network models **Can be time-consuming, expensive and not 100% accurate**²

² Topology, phase grouping, impedances, neutral, grounding

2 Our Model-Free Approach

Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (Under Review)

Deliverables 1-2-3a Model-Free Voltage Calculations and Operating Envelopes, Report, 2022 (ResearchGate)

Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)

Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks, IEEE PES PowerTech 2021 (ResearchGate)

Calculating Voltages Without Electrical Models: Smart Meter Data and Neural Networks, CIRED 2021 (ResearchGate)

2 Our Model-Free Approach

Removes time and cost associated with the production of LV electrical models
 Extremely quick alternative to power flow-based techniques

Model-Free Operating Envelopes at NMI Level

Next Webinar (5th May): <u>The Future of DER Hosting Capacity and Operating Envelopes</u> Our Latest Report: <u>Deliverable 0 "Concept, Smart Meter Data, and Initial Findings"</u> Our Latest Paper: <u>Calculating Voltages Without Electrical Models</u>: <u>Smart Meter Data and</u> <u>Neural Networks</u>

$C + N \equiv T$

Centre for New Energy Technologies

https://electrical.eng.unimelb.edu.au/power-energy/projects/model-free-operating-envelopes

Training: Using historical data, we produce a NN that links inputs (P,Q) and outputs (V). **Once trained**: We can calculate V based on a set of P,Q. \bigcirc

2 Our Model-Free Approach Methodology 1/4

Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (Under Review)

Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)

Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks, IEEE PES PowerTech 2021 (ResearchGate)

Calculating Voltages Without Electrical Models: Smart Meter Data and Neural Networks, CIRED 2021 (ResearchGate)

2 Our Model-Free Approach Methodology 2/4

I. Smart Meter Data

Step 1: Collect the historical per-phase smart meter data
Step 2: Pre-process the historical smart meter data to obtain P and Q values
Step 3: Build training data set (set of instances of P, Q, and V)

II. Neural Network Selection

Step 4: Define hyperparameters and NN characteristics (using our recipe)

- Input layer dimension (twice the number of customers, 2|C|)
- Output layer dimension (number of customers, |*C*|)
- Output layer activation function (Linear)
- Loss function (MSE)
- Scaler ([0,1])
- Optimiser (ADAM)

2 Our Model-Free Approach Methodology 3/4

Step 5: Define search spaces for the remaining hyperparameters (using our *recipe*)

- 1 hidden layer (part of our *recipe*)
- Neurons and activation functions in each hidden layer
- Learning rate, batch size, epochs

Step 6: K-fold cross validation considering combinations of hyperparameters defined in Step 5

• Select hyperparameter combination with the **lowest** *RMSE*_{Kfold}

$$RMSE_{Kfold} = \frac{1}{K} \left(\sum_{k=1}^{K} RMSE_{val_k} \right)$$

2 Our Model-Free Approach Methodology 4/4

(**公**)

Step 7: 10 NNs are trained from scratch with the hyperparameters defined in Step 6

NN with the lowest RMSE → Final NN ready for voltage calculations ☺

III. Model-Free Voltage Calculations

Step 8: Voltages can be calculated by specifying *P* and *Q* of customers \bigcirc

Implementation: Open-Source Software

2 Our Model-Free Approach Summary

1. <u>Development</u>: Production of the Neural Network (NN) using our *recipe*

2. <u>Application</u>: Calculation of Hosting Capacity, Operating Envelopes, etc.

2 Our Model-Free Approach Data Requirements (Prod of NN)

- Smart Meter Data from all customers fed by the same transformer
 - > We can still produce good results with missing data (e.g., C&I customers)
- Smart Meter Data needs to be good
 - > No topological changes in the historical data (otherwise the physics change)
 - > All data points need to be valid and make sense \rightarrow Pre-processing/filtering
- Smart Meter Data for at least 3 weeks
 - > Minimum period considering 5-min data (the filtering might reduce the dataset by 20-50%)

Challenging for most distribution companies in the world... but little by little **smart meters are becoming a reality** ©

B Smart Meter Data

Smart Meter Data Overview

	Jemena	United Energy	AusNet
Distribution Transformers	3	3	2
LV Circuits	9	7	2
Single-Phase Customers	394	176	35
Three-Phase Customers	67	23	7
Date Range	01 Sep 2020 to 30 Sep 2021 (~56 weeks)	01 Aug 2020 to 31 Aug 2021 (~56 weeks)	19 Jan 2021 to 23 Aug 2021* (~30 weeks)
Voltage magnitude, V [V]	\checkmark	\checkmark	\checkmark
Current magnitude, [[A]	\checkmark	~	✓
Power factor (-1) to (1), PF	\checkmark	\checkmark	-
Imaginary current, I ^{imag} [A]	-	-	\checkmark
Real current, I ^{real} [A]	\checkmark	-	\checkmark

Data needs to be pre-processed (*P*, *Q*) **and filtered** (to remove noise)

* The data rage indicated is not continuous i.e., there exist a gap in the data

3 Smart Meter Data Unfiltered Data: Voltage and Currents

Real data challenges: Abnormal voltages and currents (e.g., faults), missing data, etc.

3 Smart Meter Data Filtering

- Filtering process to extract <u>valid instances</u>
 - Remove instances with zero values on voltages
 - Remove incomplete instances (i.e., no measurements for all customers)

	Jemena		Ur	United Energy			AusNet	
	SubA	SubB	SubC	SubA	SubB	SubC	Site A	Site B
Total instances	113,760	113,760	113,760	122,111	122,111	122,111	32,256	8,064
Valid instances	88,755	59,979	80,724	117,475	111,235	72,463	29,441	5,676
Valid instances (%)	78.02	52.72	70.96	96.20	91.09	59.34	91.27	70.39

Final filter due to small changes in the number of customers (Jemena)

	Jemena		Ur	United Energy		AusNet		
	SubA	SubB	SubC	SubA	SubB	SubC	Site A	Site B
Final Valid Instances	80,763	44,926	42,490	117,475	111,235	72,463	29,441	5,676
Equivalent Weeks	40.06	22.28	21.08	58.27	55.18	35.94	14.60	2.81

Final valid instances (a few weeks only) → **NN training and testing**

Active Power (kW)

Active Power (kW)

Active Power (kW)

Smart Meter Data Single Customer: *Q* vs *P* and *V* vs *Q*

Volt-var response becomes evident

IEEE

Power & Energy Society*

4 Model-Free Calculations

4 Model-Free Calculations Jemena Case Study

- Site: 1 Distribution transformer with 3 LV circuits
- Customers:
 - 156 single-phase (13 with PV systems)
 - 14 three-phase
 - > Total of **198** customers for the NN ($|C| = 156 + 14 \times 3 = 198$)
- Resolution: 5 minutes (P,Q,V)
- Training data: ~6 weeks
- Test data: ~3 weeks

→ Objective 1: Produce a single Neural Network for all 3 LV circuits
→ Objective 2: DER Connection Request, DER Hosting Capacity and Operating Envelopes

4 Model-Free Calculations Training Data Set

Eq. 3 weeks (5min resolution)

4 Model-Free Calculations Neural Network Selection

Problem Characteristics

Input Layer dimension	$2 \times (156 + 3 \times 14) (396 = 2 C)$
Output Layer dimension	$156 + 3 \times 14 (198 = C)$
Output Activation Function	Linear
Loss Function	MSE
Optimiser	ADAM

K Fold Cross Validation			
K Fold	6 (1 week length each)		
N° of hidden layers	1		
N° of Neurons	$[0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] \times C $		
Activation Function	Tanh, Swish, ReLu		
Learning rate	$1 \times 10^{-2}, 1 \times 10^{-3}, 1 \times 10^{-4}, 1 \times 10^{-5}$		
Batch size	72, 144, 288		
Epochs	500, 1,000, 2,000		
Total	1,188 (6 runs each)		

29

4 Model-Free Calculations Final Neural Network

Voltage Deviation = Calculated Voltage – Actual Voltage

Accurate voltage calculations achieving an average deviation of less than 1 V (out of around 230 V)

Model-Free Voltage Calculations Results				
RMSE Test [V]	1.25			
Av Dev Test [V]	0.99			
Max Dev Test [V]	8.12			

4 Model-Free Calculations Results – All 170 Customers

ity

4 Model-Free Calculations Application – <u>DER Hosting Capacity</u>

Assessment of PV Hosting Capacity

- Same considerations as before
- Four scenarios: ~10, ~20, ~30 and ~40% of customers with PV
- Check: Max voltage of all customers ≤ 260V (new VIC limit)

DV Denetration

	i lax Foldage	
Ī	YES (252.16 V)	Base case (8%)
	YES (253.59 V)	Scenario 1 (10%)
	YES (254.84 V)	Scenario 2 (20%)
Hosting Capac	YES (259.69 V)	Scenario 3 (30%)
	NO (263.17 V)	Scenario 4 (40%)

Max Voltage

Super quick DER hosting capacity assessments ©

(a few secs depending on penetrations, etc.)

4 Model-Free Calculations Application – <u>Operating Envelopes</u>

Calculation of OEs (Exports)

- Same considerations as before (for passive customers)
- 30 active customers: Equal Opportunity (same OEs to all)
- Progressive assessment: 1, 2, ... 10kW of exports
- **Check**: Max voltage of all customers ≤ 260V (just an example)

Voltages OK?

Exports	Max Voltage	
0 kW	YES (252.61 V)	
1 kW	YES (253.22 V)	
2 kW	YES (253.76 V)	
3 kW	YES (254.71 V)	
4 kW	YES (257.12 V)	
5 kW	YES (259.40 V)	0
6 kW	NO (261.53 V)	

Again, super quick OE calculations ©

5 Model-Driven vs Model-Free

Our Latest Webinar: <u>Reactive power and voltage regulation devices to enhance operating</u>
<u>envelopes</u> (<u>Slides</u>)
Our Latest Paper: <u>Using OPF-Based Operating Envelopes to Facilitate Residential DER</u>
<u>Services</u>
Reports now available: <u>Operating Envelopes Calculation Architecture</u> and <u>High-level</u>
<u>Assessment of Objective Functions</u>

https://electrical.eng.unimelb.edu.au/power-energy/projects/project-edge

5 Model Validation for Site A (Project EDGE) Unvalidated vs Validated

IEEE

Power & Energy Society*

IEEE **5** Electrical Model vs Neural Networks Power & Energy Society® (NN with 6 weeks of 5-min smart meter data) **Electrical Model Neural Network** Slow, expensive process Fast and cheap ☺

NN (with V at the Tx) outperforms the electrical model!

245

235

235

240

240

245

6 Key Remarks

6 Key Remarks

- Initial Findings
 - > A model-free future is possible ③
 - > NNs can capture the physics of LV networks
 - > Once the NN is ready, it becomes an **alternative to calculate voltages**
 - **Extremely quick** (faster than power flows) to assess DER connection requests, DER hosting capacity, operating envelopes, etc.
 - \succ Minimum (valid) data needed? \rightarrow Latest findings: 3 weeks (5-min res)
- Some Other Challenges
 - **Topological changes?** \rightarrow NN needs updating (same for any electrical model)
 - > But a NN could flag this change
 - **Extrapolation has limitations** (you can have non-sensical results) \rightarrow Ongoing research
 - SWER networks? \rightarrow Tricky but not impossible \odot

Further Reading

Our Project

https://electrical.eng.unimelb.edu.au/power-energy/projects/model-free-operating-envelopes

Recent Publications

Electrical Model-Free Voltage Calculations Using Neural Networks and Smart Meter Data, IEEE Trans. on Smart Grid (Under Review)

Deliverables 1-2-3a Model-Free Voltage Calculations and Operating Envelopes, Report, 2022 (ResearchGate)

Deliverable 0: Concept, Smart Meter Data, and Initial Findings, Report, 2022 (ResearchGate)

Model-Free Voltage Calculations for PV-Rich LV Networks: Smart Meter Data and Deep Neural Networks, IEEE PES PowerTech 2021 (ResearchGate)

Calculating Voltages Without Electrical Models: Smart Meter Data and Neural Networks, CIRED 2021 (ResearchGate)

luis.ochoa@unimelb.edu.au

Acknowledgement

C 4 N E T

Centre for New Energy Technologies

- Vincenzo Bassi
- **Dillon Jaglal**
- Tansu Alpcan
- **Chris Leckie**
- **Michael Liu**
- Melbourne Energy Institute

