Urban Microgrids Battery and Energy Storage Solution

Continue to up-skill and grow with industry partners and communities.

Be empowered with lifelong learning opportunities, skills and knowledge sharing.

- My name is Peter Ng.
- >30 years in power engineering industry
- 2006~2017 : Managing Director and board member of Narada Asia Pacific Pte. Ltd. Business in battery storage solution with distribution network in Singapore and Asia Pacific countries
- 2018~ Business advisor, consultant in energy storage solution integration for micro-grid distributed energy storage solution (DESS)
- 2022~ volunteers @ sustainable energy association of Singapore (SEAS) energy storage system working group.
- Having obtained the ACLP (advanced certificate in learning performance), continues the journey as a skill future industry trainer to impart knowledge and learning experiences.

History Energy Storage Solution Application

AWARENESS

Technology and components to form an Energy Storage System

Application and Safety

G Awareness – Application and Benefits of Energy Storage System

defer the cost of building

new transformers and

short term peak load

demand

substations by meeting

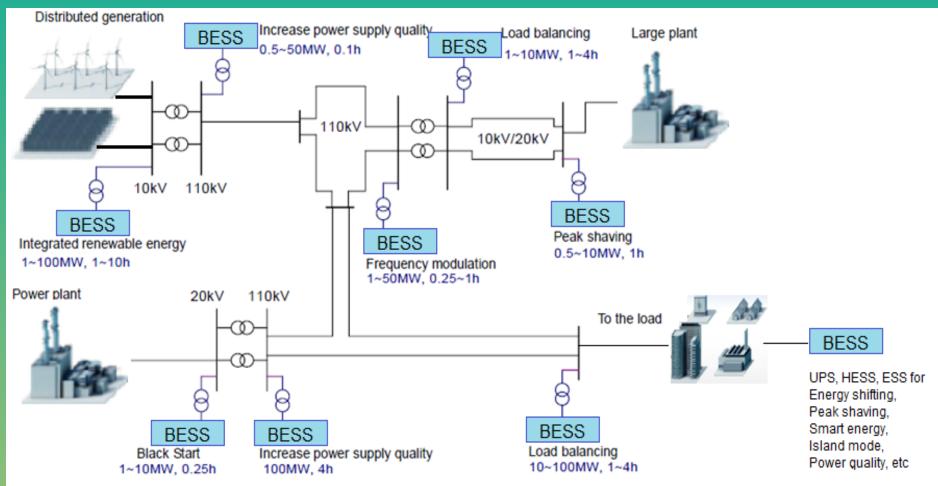
Solve renewable energy

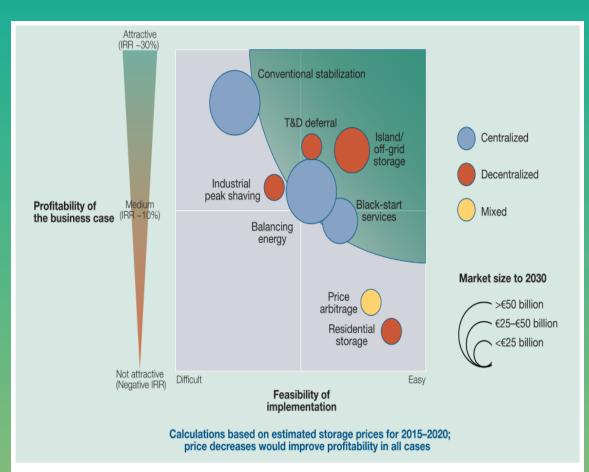
challenges – solar energy intermittency and manage storage of excess energy.

> Frequency regulation - stability of power quality . Quick response to maintain system frequency range

Primary Contingency

Reserve – fast acting generation capacity that can be activated quickly to compensate sudden shortfall of electricity supply.

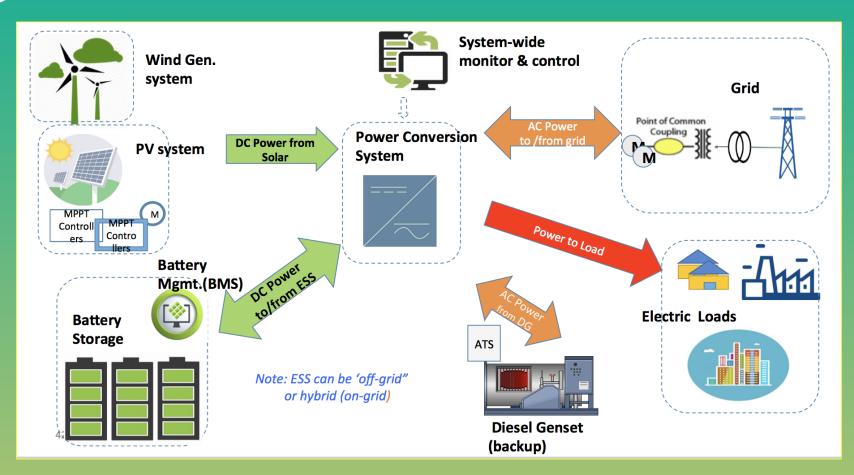

Peak shaving - use battery to manage energy consumption from peak to non peak.


3

4

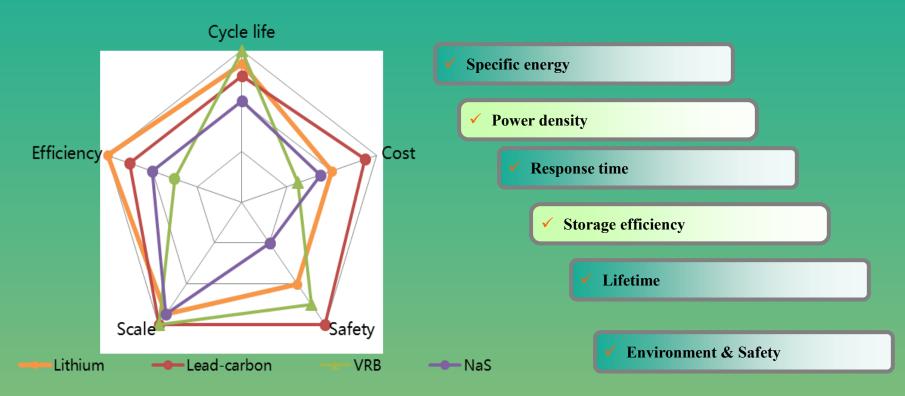
Application	Value
Energy arbitrage	Provide flexibility between supply and demand
Ramp-rate control / firming of renewables	Reduce the strain on the balancing and reserve capacity of the power system by reducing the intermittency of renewables
Reduction of curtailment losses	Avoid revenue loss by storing energy during periods of curtailment, or avoid curtailment altogether
Frequency control	Provide additional frequency response reserve to the power system, allowing more non-synchronous
Voltage control	Provide voltage support to the grid, increasing its transmission/distribution capacity
Stacked applications	A combination of the above!

Feasibility of ESS implementation



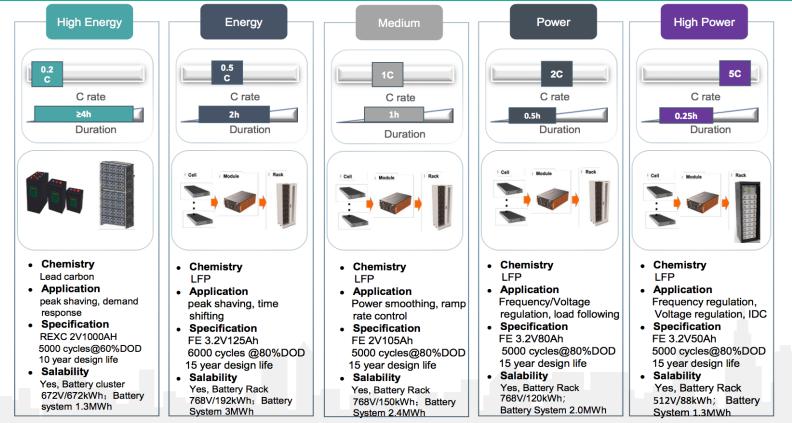
application

Appreciate - Different technologies application in Energy Storage System

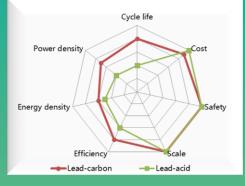


Battery Chemistry (Common trend)

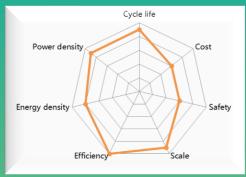
Parameter	Lead Carbon Battery	Li-ion Battery	Vanadium Redox Flow Battery (VRB)	Sodium-ion Battery
Efficiency (DC+AC)	65-80%	85-90%	70-80 %	80-90%
Available C-Rates	C/10 – 0.5C	C/4 – 4C	C/10 – 0.2C	Fast charge to 80% in 15mins (close to 4C)
Depth of Discharge (DOD)	50%	80%	100%	90-100%
Energy Density (Wh/kg)	40 - 60	LFP: ~180Wh/kg NMC: ~300Wh/kg	8 -14	~160Wh/kg
Energy Density (Wh/L)	50-100	200-800	20-70	A bit lower than LFP
Cycle cycle	800 – 2000	2000 – 4000	<u>≥</u> 10000	3000-5000
Cycle time (years)	3-5	8-10	15-25	10-15
Fire Safety	High	Medium	High	High
CAPEX (\$/kWh)	350 – 630	390-580	600 – 1000	Chasing after Lithium-ion
Chemicals Toxicity / Environmental impact	High	High	Medium	Low



Comprehensive comparison of different battery technology (general)


BESS Technology application (typical)

Apply - Different type technologies : VRLA-Lead Acid Battery ESS



- Lead carbon technology combines the feature of super capacitor and lead acid battery
- Active carbon into negative active material
- Long life @ PSOC performance
- Good cycle life
- Fast Recharge
- Feasible manufacture technology
- Low cost Recyclable
- Rank high in safety .
- Disadvantage : Low specific energy

Note: Photo contribution from Narada for illustration purpose only

Apply - Different type technologies : Lithium Ion Battery Energy Storage System

Advantages

- High specific power & energy
- High efficiency
- Long cycle life

Disadvantages

- Difficult to manage cell grouping
- High overall cost

Safety concerns Note: Photo contribution from Narada for illustration purpose only

Apply – Typical Container Battery Energy Storage System

Lead Carbon Containerized Solution

Walk-In Lithium Containerized Solution

None-Walk-In Lithium Containerized Solution

Full Populated 20' Lithium Containerized Solution

Note: Photo contribution from Narada for illustration purpose only

Apply – Plant Energy Management System

Email:

peterng.nps@gmail.com

Brighter and Greener Future

Let's build a City of Green Possibilities together