IEEE ISGT 2022- NRF-SPECS Panel Discussions on Advances in DERs Integration and VPPs for Urban Grid Flexibility

Assoc. Prof. Sanjib Kumar Panda

Director, Power and Energy Area, NUS

S Department of Electrical & Computer Engineering Electrical Machines and Drives Laboratory

The Evolving Power Grid: Challenges can be Opportunities

- Energy grid 2.0:
 - Decentralized/distributed energy generation
 - Diversified nature of loads both AC and DC
 - Bidirectional power and information flow
- Microgrids building blocks of future grid
- Key for economic and efficient operation of microgrids - architectures that avoids multiple energy conversions
- Microgrids are interconnected to other microgrids or grid at higher voltages through energy control centers (ECC)
- Objectives of ECC:
 - Active power-flow control, compensation
 - VAR & harmonic compensation

Future energy grid 2.0:

- Control of DC bus to integrate renewables & storage
- Microgrid control during islanding/grid connection
- Information sharing between microgrid and rest of the n/w

ECC is realized using solid-state transformer also know as power electronic transformer or smart transformer

THE CHALLENGE OF MITIGATING CARBON EMISSIONS IN GRID 2.0 OF SINGAPORE

The Grid Emission Factor (**GEF**) trend shown above (*source: Singapore Energy Statistics'17, EMA*) indicates that further reductions would be difficult. **Photovoltaic generation** is necessary to reduce GEF further.

REAL-TIME POWER-FLOW MANAGEMENT FOR GRID 2.0

To be managed by intelligent machines!

Typical multi-bus micro-grid system

Static Transfer Switch (STS) on or off defines grid connected and islanded operation.

- DG1, DG2 and/or DG3 can be fossil fuel based or renewable energy source based generator interfaced to common AC bus using power electronic converters.
- Main concerns of micro-grid research are : High band-width active and reactive power flow control, THD control of current drawn from common AC bus, Load voltage regulation...etc....

• Total load active power P_L is shared between inverter active power, P_{inv} and grid active power, P_g ... i.e. $P_L = P_{inv} + P_g$

- There is a shavings in power consumption from local bus (grid).
- The current drawn local bus is purely sinusoid with DPF=1.
- High-performance non-linear current controller is used for the inverter to perform two actions:
 - Active power flow control
 - THD control of grid current
 - The local bus (grid) voltage can be unbalanced or harmonic contaminated.

Emerging Concept of Grid Interactive Efficient Buildings

Agile, Intelligent, Efficient and Resilient Connected-Community of Buildings

U.S. Department of Energy (DOE), "Grid-interactive Efficient Buildings Whole-Building Controls, Sensors, Modeling, and Analytics," 2019.

Intelligent Grid Interface System for Utility-Customer Power Interaction Control

Interoperability in DER dominated buildings through Testbed Demo

Electrical Resources in Buildings

Setup of the Physical Testbed

- Development of scalable control strategies for grid participation and enabling interoperability within buildings
- Dashboard developed for coordinated control of the Energy Nodes in nanogrid test-bed

Real-time GUI for Testbed Network Coordination and Interoperability

Virtual Market based control of ACMV systems

markets

Virtual Market based control of ACMV systems

R. Chandra, K. R. Krishnanand, and S. K. Panda. in Sustainable Energy, Grids and Networks, 2022

High Efficiency and Power Density SST based utility grid interface

Emerging Applications of SST based utility grid interface

Schematic of MV grid-connected bidirectional fast-charging station

Matrix-based Compact and Efficient BESS interfacing converter

3 Phase, 230 V_{rms}, 50 Hz

Schematic of the bidirectional isolated power conversion

Circuit diagram of the proposed bidirectional isolated matrixbased AC-DC power converter for integration of battery storage

2 kW experimental prototype of the proposed 3-phase bidirectional matrix-based AC-DC power converter

Real-time Grid Impedance Measurement for Adaptive Control

A power electronics based Microgrid

- In Microgrid applications, the DES are connected through an inverter and it is typically controlled as a current source
- Important concern for grid-connected inverter: effects of grid impedance on inverter control performance and stability.
- High grid impedance can destabilize the inverter current control loop and lead to sustained harmonic resonance or other instability problems
- Real-time grid impedance measurement is compulsory for adaptive control of Inverter for improved stability.

Digital Twin approach for fault diagnosis in Solar PV Systems

An overview of a digital twin approach for fault diagnosis of the complete Distributed Solar PV system

The PV energy conversion system in field used for conducting outdoor field experiments

Fault Diagnosis and Post-fault Reconfiguration scheme for Interleaved Boost Converter (commonly used for solar PV systems)

Yes

Wait for Period

 T_w

No

Sampled Input Current

 (I_{in})

Check for MPPT

Operation

Compute switching frequency

component magnitude (i_{fs}) using DFT

 $I_{fs} > I_{fs(TH)}$

Compute phase angle

to localize fault

Yes

No

Experimental setup for verification of proposed approach

Energy Analytics in a DER rich Grid-interactive-building

- Three-phase energy consumption at the input and identification of unbalanced loading
- Energy consumption according to load types, identification of abnormal energy consumption, detect anomalies and provide corrective suggestions if necessary

THANK YOU