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The Evolving Power Grid: Challenges can be Opportunities

Energy grid 2.0:
= Decentralized/distributed energy generation
= Diversified nature of loads — both AC and DC
= Bidirectional power and information flow

Microgrids - building blocks of future grid

Key for economic and efficient operation of
microgrids - architectures that avoids multiple
energy conversions

Microgrids are interconnected to other
microgrids or grid at higher voltages through
energy control centers (ECC)

Obijectives of ECC:
- Active power-flow control, compensation
— VAR & harmonic compensation
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Future energy grid 2.0:

— Control of DC bus to integrate renewables & storage
—  Microgrid control during islanding/grid connection
- Information sharing between microgrid and rest of the n/w

ECC is realized using solid-state transformer also know as power electronic transformer or smart transformer
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THE CHALLENGE OF MITIGATING CARBON EMISSIONS IN GRID 2.0 OF SINGAPORE
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The Grid Emission Factor (GEF) trend shown above (source: Singapore Energy Statistics’17, EMA) indicates
that further reductions would be difficult. Photovoltaic generation is necessary to reduce GEF further.




REQUIRED PARADIGM SHIFT IN GRID’S STRUCTURE
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REAL-TIME POWER-FLOW MANAGEMENT FOR GRID 2.0

v' Requires analysis and

v’ Transactive Energy
framework

v Actionable intelligence

v’ Fail-safe algorithms
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To be managed by intelligent machines!

G

v" Grid 2.0 must be able to:

optimize energy savings
reduce carbon footprint

maintain grid-stability

improve self-sustainability
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Typical multi-bus micro-grid system

Micro-Grid
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= Static Transfer Switch (STS) on or off defines grid connected and islanded operation.

» DG1, DG2 and/or DG3 can be fossil fuel based or renewable energy source based generator
interfaced to common AC bus using power electronic converters.

= Main concerns of micro-grid research are : High band-width active and reactive power flow
control, THD control of current drawn from common AC bus, Load voltage regulation...etc....



Scheme: MICRO GRID
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= Total load active power P, is shared between inverter active power, P;,, and grid active
power, P,... i.e. P;=P; +P,
=" There is a shavings in power consumption from local bus (grid).

" The current drawn local bus is purely sinusoid with DPF=1.
= High-performance non-linear current controller is used for the inverter to perform two

actions:
= Active power flow control
= THD control of grid current
®» The local bus (grid) voltage can be unbalanced or harmonic contaminated



Emerging Concept of Grid Interactive Efficient Buildings

Grid-interactive efficient buildings
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U.S. Department of Energy (DOE), "Grid-interactive Efficient Buildings," 2022.



Agile, Intelligent, Efficient and Resilient Connected-Community of Buildings
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U.S. Department of Energy (DOE), "Grid-interactive Efficient Buildings Whole-Building Controls, Sensors, Modeling, and Analytics," 2019



Intelligent Grid Interface System for Utility-Customer Power
Interaction Control

Generator1  Generator 2 Generator 3 Generator Ng

Controlled Energy :
l Appliances Storage Deferrable Appliances  Uncontrolled Lc:adsJ

Energy Transactions with

Grid/Microgrid/Nanogrid

Adjusted Prices ¥
- _

Transactive
Energy Management
System

- —
Adjusted Demand

Transactive Grid

Demand Agent Building 1 Building 2 Building 3 Building Ng Passive Loads

A prosumer building with electrical resources Multiple prosumers connected to grid/microgrid/nanogrid
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Building Energy Management Transactive Energy Management
Systems (BEMS) Systems (TEMS)

SinBerBEST Nanogrid [ for buitding g1 ][ for nanogrid ]

__________________________________________

( Renewable ’ Energy Node ‘
Energy Source

building-grid emulation

| E |
| o[ l '
D . a :
> i DC Loads }(— - i
| Node ' Utility
: SLOraEE NI« Controller :
| System ,
1

Non-critical <
AC Loads (M) Smart Meter

A cluster of energy nodes forms a
nanogrid/microgrid depending on
cumulative power capability.

Supervisory Control Unit (SCU) here is a
nanogrid/microgrid control unit.

11




Interoperability in DER dominated buildings through Testbed Demo

Utility Micro Diesel
Connection Wind Solar Generator
i i
Office Space H Dt Cartra
Heating/Cooling UPS
(Non-critical) Giiding (Critical)

Electrical Resources in Buildings

* Development

of

scalable

control

strategies

for

participation and enabling interoperability within buildings
* Dashboard developed for coordinated control of the Energy
Nodes in nanogrid test-bed

grid

4| SBE2EnergyNode

1. 3 Phase Prog. Loads
2. PV Emulator

3. Grid Emulator

4. Storage Inverter

S. Battery Emulator
6. 3 Phase Prog. Loads

7. Distribution Line Model

8. 3 Phase Passive Loads

Setup of the Physical Testbed

Cross-theme collaboration with Theme-E
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Virtual Market based control of ACMV systems
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Typical ACMV system schematic

Wholesale Market

I

— EMA DR :

Other Demand Bid :
I

Participants ﬁ ©
AcMmy VS Pelec)
Local ﬁ o .
Conditioned Air
Virtual Supply

Air Bid (Qg vs Pelec)

Market
Qé/ Qgﬂ a

Virtual market-based control with Transactive Energy
principles is proposed for air conditioning systems in

Proposed virtual Transactive Market based control
schematic

buildings for participation in Demand Response
markets
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Virtual Market based control of ACMV systems

{ Transactive Control of Air Conditioning systems for Demand Response program in Singapore

MATLAB-EnergyPlus Co-simulation

Tool Box

|/\f\ —| Market-based - Zone Air . XA

Control Flow Rates o et

Electricity |-| Zone

Market il ] Commercial Building Model Temperatures
Prices

MATLAB—-EnergyPlus co-simulation set up

Results

* Novel dynamic programming (DP) approach to
utilize the temporal flexibility in cooling demand

* Integration with EnergyPlus BEM platform
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R. Chandra, K. R. Krishnanand, and S. K. Panda. in Sustainable Energy, Grids and Networks, 2022
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High Efficiency and Power Density SST based utility grid interface
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Scaled-down laboratory level prototype

MVAC-LVDC interface for integrating renewables and
energy storage resources within cluster-of-buildings . Efficiency ~ 96% and power density ~ 3 kVA/L

J. Saha, N.B.. Gorla, and S. K. Panda. in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021



Emerging Applications of SST based utility grid interface
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Schematic of MVAC-LVDC conversion stage for MV grid-
interfacing of DC based data-centre distribution grid.
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Schematic of MV grid-connected bldlrectlonal fast-charging station
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Matrix-based Compact and Efficient BESS interfacing converter
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Real-time Grid Impedance Measurement for Adaptive Control
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A power electronics based Microgrid
= |n Microgrid applications, the DES are connected through an inverter and it is typically controlled as a current source

= |mportant concern for grid-connected inverter: effects of grid impedance on inverter control performance and stability.
= High grid impedance can destabilize the inverter current control loop and lead to sustained harmonic resonance or
other instability problems

= Real-time grid impedance measurement is compulsory for adaptive control of Inverter for improved stability.



Digital Twin approach for fault diagnosis in Solar PV Systems
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An overview of a digital twin approach for fault diagnosis of
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conducting outdoor field experiments



Fault Diagnosis and Post-fault Reconfiguration scheme for
Interleaved Boost Converter (commonly used for solar PV systems)
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Energy Analytics in a DER rich Grid-interactive-building
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Python-based Energy Analytics Dashboard Using Real Data from Living Lab

 Three-phase energy consumption at the input and identification of unbalanced loading

* Energy consumption according to load types, identification of abnormal energy consumption, detect
anomalies and provide corrective suggestions if necessary

K.R. Krishnanand, D.C. Hoang, M.Gupta and S. K. Panda. in IEEE Transactions on Industry Applications, 2020
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